
POSTER: Jasper, A Scalable and Fair Multicast for
Financial Exchanges in the Cloud

Muhammad Haseeb
New York University

Jinkun Geng
Stanford University

Ulysses Butler
New York University

Xiyu Hao
New York University

Daniel Duclos-Cavalcanti
Technical University of Munich

Anirudh Sivaraman
New York University

There has been a growing interest from both industry [8, 11,
12] and academia [7, 9] in migrating financial exchanges to
the public cloud because of multiple benefits provided by
the cloud, including scalability, robust infrastructure, flexible
resource allocation, and potential cost savings [4]. However,
migrating a financial exchange from on-prem clusters to the
cloud poses several challenges.
Financial Exchanges Requirements: One fundamental re-
quirement for a typical financial exchange is a fair multicast
service [7]. Such a service (e.g., NASDAQ’s ITCH [10]) is
responsible for disseminating information about the state of
the market (termed asmarket data) to a large number of mar-
ket participants (MPs). Market data serves as the important
reference for MPs to make trading decisions, and High Fre-
quency Trading (HFT) firms often compete on how quickly
they can place trades based on this information. To ensure
fairness, market data should be delivered to every MP almost
simultaneously, so that no MPs can earn unfair advantages
over others. Besides, HFT firms also require consistently low
latency from exchange to MPs for market data distribution
so that MPs can trade on the most up-to-date information.
Challenges in the Cloud: While a high-performance fair
multicast service in on-prem clusters might be implemented
using switch support and carefully engineered networks,1
the situation is much less favorable in the public cloud, where
the hardware (e.g., switch) support for multicast is not usu-
ally available to cloud tenants. The public cloud also ex-
hibits higher and more varied latency than on-prem clusters.
This variance, combined with the limited control a tenant
possesses on the underlying network, makes it difficult to
realize fair/simultaneous delivery of market data to all the
market participants (MPs). As a result, implementing such a
multicast service for financial exchanges in the public cloud
becomes challenging for cloud tenants.
Jasper: We develop Jasper, an overlay multicast service for
cloud-hosted financial exchanges (Figure 1). To achieve low
latency while scaling to a large number of receivers, Jasper
(1) builds a tree of proxies for multicast, instead of having

1Some financial firms measure wire lengths [14] to achieve simultaneous
delivery of market data to all MPs.

the sender directly unicast its message to all receivers; (2)
introduces a VM hedging technique to tackle high latency
variance; (3) designs a deployment model assuming no trust
between MPs and the exchange server that incorporates a
hold-and-release mechanism [7] (the receivers hold messages
and only process them at a deadline) with the Trusted Exe-
cution Environment (TEE) technique [2] to ensure fairness.

A Proxy Tree: A tree reduces the serialization or transmis-
sion delay required to unicast multiple messages back-to-
back, but adds additional hops in the sender-to-receiver path.
In Jasper, we use the tree structure as a starting point and de-
velop new techniques to lower latency and latency variance
and achieve fairness in data delivery while scaling to a large
number of receivers. The structure of a proxy tree (depth 𝐷

and fan-out 𝐹 ) is tuned to minimize latency. Existing cloud-
based exchanges [7–9] implement multicast using the direct
unicast approach. This may be considered a special case of
a tree where 𝐷 is 1 and 𝐹 is 𝑁 . We show that there is value
in increasing the 𝐷 and decreasing the 𝐹 as the number of
receivers (𝑁 ) grows. We provide a heuristic for tuning 𝐷 and
𝐹 which provides good performance: Given 𝑁 receivers, we
fix 𝐹 = 10 and then derive 𝐷 = [𝑙𝑜𝑔10𝑁 ] (round to the near-
est integer). We find that more sophisticated learning-based
techniques do not outperform our simple heuristic because
of the high variation in latency and performance of VMs in
the public cloud.
VM hedging: For achieving consistently low latency and
decreasing the latency variance spatially, Jasper introduces a
technique called VM hedging, motivated by request hedging
[6, 13, 15]. In VM hedging, each VM in the proxy tree receives
messages from two or more different sources (i.e., parent and
one or more aunts), defined by hedging factor 𝐻 , where the
path lengths for all messages are the same. A VM processes
and forwards the message copy to children that is received
earliest and discards the rest. VM hedging reduces the impact
of latency fluctuations, yields much smaller latency variance,
and narrows down the window of time in which all the
multicast receivers receive a multicast message.

1



Sender

P P P

P P P P P P P P P

Proxies use DPDK
and send messages to children + 
a set of nieces

Sender may use either of two interfaces:
- DPDK
- eBPF/TC with Linux sockets

Receivers may use either of two interfaces: DPDK or eBPF/XDP with Linux sockets
All receiver VMs are equally divided among the last level of proxy VMs

Fanout and depth 
of proxy tree 
depends on # of 
receivers

La
ye

r 
2

La
ye

r 
1

La
ye

r 
0

1

0

1 1 1 1 1 1 1 1

0 0
0 1 2

0 1 2 3 4 5 6 7 8

Figure 1: A Jasper Tree. Dotted edges represent hedging, which lowers the latency variance.
Jasper Deployment Model: To ensure perfect fair delivery of
data, the exchange requires theMPs to run a hold-and-release
mechanism, as proposed by CloudEx [7]. In this mechanism,
deadlines are attached to the messages, and an MP is sup-
posed to receive a message and only process it at or after
a deadline associated with the message. The deadlines are
set, by the exchange in a way to ensure that every MP will
receive the message by the deadline. The efficacy of this fair
delivery mechanism relies on the MPs to respect the hold-
and-release protocol. However, MPs have the incentive to
not respect the protocol and process the messages before the
deadline to gain an advantage over the others. This raises
security concerns in Jasper. We assume no trust between
MPs and exchanges in Jasper deployment: MPs do not trust
their trading programs are exempt from hijacks if running
on the VMs provided by the exchange. On the other hand,
the exchange does not trust MPs will honestly execute the
hold-and-release protocol on the VMs owned by the MPs.
To resolve this dilemma, we incorporate the TEE technique,
which has become generally available in public cloud [2, 3, 5],
to maintain security boundaries between the exchange and
traders. More specifically, MPs run their trading algorithm
inside the enclaves of the VMs owned by the exchange, and
the exchange runs the hold-and-release mechanism outside
the enclave. As a result, MPs’ trading program is protected
by the TEE, and the exchange can also execute the hold-and-
release protocol in its owned VMs.
Jasper outperforms AWS Transit Gateway: Figure 2 shows
that Jasper distinctly outperforms AWS-TG based multicast
and DU (Direct Unicasts approach). The median latency for
Jasper is 129𝜇𝑠 where it is 228𝜇𝑠 for AWS TG and 254𝜇𝑠 for
DU for 100 multicast receivers. We observe more benefits
from Jasper as the number of receivers increases.
VM Hedging reduces delivery window size: VM hedging
reduces the spatial variance i.e., messages are received by
multicast receivers at almost the same time. Figure 3 shows
that delivery window size (the difference between the time
when the first receiver and the last receiver receive a multi-
cast message) is reduced with hedging.

200 300 400 500
Overall Multicast Latency (microseconds)

0

20

40

60

80

100

CD
F

AWS TG
DU
Jasper

Figure 2: Jasper outperforms DU, and AWS TG.

50 100 150 200 250 300 350
Delivery Window Size(microseconds)

0

20

40

60

80

100

CD
F

Jasper, H = 0
Jasper, H = 1
Jasper, H = 2

Figure 3: Hedging reduces delivery window size.
Next Steps: Currently Jasper mainly focuses on the per-
formance improvement on the ITCH direction (i.e., market
data dissemination from the exchange to MPs). However, the
cloud environment also presents challenges in the OUCH
direction (i.e., order submission from a large number of MPs
to an exchange server). We have several avenues to explore
as the next steps:
(1) A distributed limit order book [1] would enable the ex-
change to scale horizontally and further improve the through-
put of the system.
(2) A bucketed integer priority queue, instead of sim-
ple priority queues at the exchange, is more desirable to
build high-performance exchange systems, which avoids the
overheads of locking the data structures and enables more
parallelism of order processing.
(3) Smartly prioritizing the critical orders (i.e., orders
that are more likely to get executed) when orders are sent
from MPs to the exchange server through the proxy tree.
Such prioritized order submission would trigger more orders
matched and further improve the liquidity of the market.

2



REFERENCES
[1] Frédéric Abergel, Marouane Anane, Anirban Chakraborti, Aymen

Jedidi, and Ioane Muni Toke. 2016. Limit order books. Cambridge
University Press.

[2] AWS. 2024. AWS Nitro Enclaves. https://aws.amazon.com/ec2/nitro/
nitro-enclaves/. Accessed: 2024-05-22.

[3] Azure. 2023. Trusted Execution Environment (TEE).
https://learn.microsoft.com/en-us/azure/confidential-computing/
trusted-execution-environment. Accessed: 2024-05-22.

[4] Sara Castellanos. [n. d.]. Nasdaq Ramps Up Cloud Move. https://
www.wsj.com/articles/nasdaq-ramps-up-cloud-move-11600206624.
Accessed: 2024-01-31.

[5] Alibaba Cloud. 2024. Build an SGX confidential computing environ-
ment. https://www.alibabacloud.com/help/en/ecs/user-guide/build-
an-sgx-encrypted-computing-environment. Accessed: 2024-05-22.

[6] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun.
ACM 56 (2013), 74–80. http://cacm.acm.org/magazines/2013/2/160173-
the-tail-at-scale/fulltext

[7] AhmadGhalayini, JinkunGeng, Vighnesh Sachidananda, Vinay Sriram,
YilongGeng, Balaji Prabhakar, Mendel Rosenblum, andAnirudh Sivara-
man. 2021. CloudEx: A Fair-Access Financial Exchange in the Cloud.
In Proceedings of the Workshop on Hot Topics in Operating Systems (Ann
Arbor, Michigan) (HotOS ’21). Association for Computing Machinery,
New York, NY, USA, 96–103. https://doi.org/10.1145/3458336.3465278

[8] Junzhi Gong, Yuliang Li, Devdeep Ray, KK Yap, and Nandita Dukkipati.
2024. Octopus: A Fair Packet Delivery Service. arXiv preprint
arXiv:2401.08126 (2024).

[9] Eashan Gupta, Prateesh Goyal, Ilias Marinos, Chenxingyu Zhao, Rad-
hika Mittal, and Ranveer Chandra. 2023. DBO: Fairness for Cloud-
Hosted Financial Exchanges. In Proceedings of the ACM SIGCOMM

2023 Conference (New York, NY, USA) (ACM SIGCOMM ’23). Asso-
ciation for Computing Machinery, New York, NY, USA, 550–563.
https://doi.org/10.1145/3603269.3604871

[10] NASDAQ. [n. d.]. Nasdaq TotalView-ITCH 5.0. https:
//www.nasdaqtrader.com/content/technicalsupport/specifications/
dataproducts/NQTVITCHSpecification.pdf. Accessed: 2024-02-02.

[11] Nasdaq.com. [n. d.]. Nasdaq and AWS Partner to Transform Capital
Markets. https://www.nasdaq.com/press-release/nasdaq-and-aws-
partner-to-transform-capital-markets-2021-12-01. Accessed: 2024-
01-26.

[12] Alexander Osipovich. [n. d.]. Google Invests 1 Billion in Exchange
Giant CME, Strikes Cloud Deal. https://www.wsj.com/articles/
google-invests-1-billion-in-exchange-giant-cme-strikes-cloud-deal-
11636029900. Accessed: 2021-02-02.

[13] Mia Primorac, Katerina Argyraki, and Edouard Bugnion. 2021. When to
Hedge in Interactive Services. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21). USENIX Association,
373–387. https://www.usenix.org/conference/nsdi21/presentation/
primorac

[14] Andrew Smith. 2014. Fast money: the battle against the high frequency
traders. The Guardian 7 (2014).

[15] Ashish Vulimiri, Philip Brighten Godfrey, Radhika Mittal, Justine
Sherry, Sylvia Ratnasamy, and Scott Shenker. 2013. Low latency via
redundancy. In Proceedings of the Ninth ACM Conference on Emerging
Networking Experiments and Technologies (Santa Barbara, California,
USA) (CoNEXT ’13). Association for Computing Machinery, New York,
NY, USA. https://doi.org/10.1145/2535372.2535392

3

https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://learn.microsoft.com/en-us/azure/confidential-computing/trusted-execution-environment
https://learn.microsoft.com/en-us/azure/confidential-computing/trusted-execution-environment
https://www.wsj.com/articles/nasdaq-ramps-up-cloud-move-11600206624
https://www.wsj.com/articles/nasdaq-ramps-up-cloud-move-11600206624
https://www.alibabacloud.com/help/en/ecs/user-guide/build-an-sgx-encrypted-computing-environment
https://www.alibabacloud.com/help/en/ecs/user-guide/build-an-sgx-encrypted-computing-environment
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
https://doi.org/10.1145/3458336.3465278
https://doi.org/10.1145/3603269.3604871
https://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/NQTVITCHSpecification.pdf
https://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/NQTVITCHSpecification.pdf
https://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/NQTVITCHSpecification.pdf
https://www.nasdaq.com/press-release/nasdaq-and-aws-partner-to-transform-capital-markets-2021-12-01
https://www.nasdaq.com/press-release/nasdaq-and-aws-partner-to-transform-capital-markets-2021-12-01
https://www.wsj.com/articles/google-invests-1-billion-in-exchange-giant-cme-strikes-cloud-deal-11636029900
https://www.wsj.com/articles/google-invests-1-billion-in-exchange-giant-cme-strikes-cloud-deal-11636029900
https://www.wsj.com/articles/google-invests-1-billion-in-exchange-giant-cme-strikes-cloud-deal-11636029900
https://www.usenix.org/conference/nsdi21/presentation/primorac
https://www.usenix.org/conference/nsdi21/presentation/primorac
https://doi.org/10.1145/2535372.2535392

	References

